init
This commit is contained in:
66
main.py
Normal file
66
main.py
Normal file
@ -0,0 +1,66 @@
|
||||
import nltk
|
||||
from nltk.corpus import wordnet as wn, brown
|
||||
import os
|
||||
from collections import defaultdict
|
||||
|
||||
NPATH = os.environ["NLTK_DATA"]
|
||||
COMMON_WORDS = {}
|
||||
|
||||
def load_data():
|
||||
nltk.download('brown', download_dir=NPATH)
|
||||
nltk.download('wordnet', download_dir=NPATH)
|
||||
nltk.download('omw-1.4', download_dir=NPATH)
|
||||
# Load frequency distribution from Brown Corpus
|
||||
freq_dist = nltk.FreqDist(word.lower() for word in brown.words())
|
||||
# Create a set of common words (adjust threshold as needed)
|
||||
global COMMON_WORDS
|
||||
COMMON_WORDS = {word for word, count in freq_dist.items() if count >= 5}
|
||||
|
||||
def is_common(word):
|
||||
# Check if word exists in Brown Corpus with minimal frequency
|
||||
is_frequent = word in COMMON_WORDS
|
||||
# Check if the word has multiple synsets (indicates broader usage)
|
||||
synset_count = len(wn.synsets(word))
|
||||
# Adjust thresholds: require frequency AND at least 1 synset
|
||||
return is_frequent and synset_count >= 1
|
||||
|
||||
def filter_common(words):
|
||||
return {word for word in words if is_common(word)}
|
||||
|
||||
def get_words():
|
||||
nouns = set()
|
||||
adjectives = set()
|
||||
# Iterate over all synsets in WordNet
|
||||
for synset in wn.all_synsets():
|
||||
pos = synset.pos()
|
||||
for lemma in synset.lemmas():
|
||||
word = lemma.name().replace('_', ' ').lower() # Normalize word
|
||||
# no need for compoud words
|
||||
if "-" in word or " " in word or "'" in word or len(word) < 3 or "." in word:
|
||||
continue
|
||||
if lemma.name().istitle():
|
||||
continue
|
||||
# Check for nouns (singular/uncountable)
|
||||
if pos == 'n':
|
||||
# Use WordNet's morphy to get base form
|
||||
base_form = wn.morphy(word, pos='n')
|
||||
# If base form matches the word, it's singular/uncountable
|
||||
if base_form == word:
|
||||
nouns.add(word)
|
||||
# Check for adjectives (including satellite adjectives)
|
||||
elif pos in ('a', 's'):
|
||||
adjectives.add(word)
|
||||
# Filter using Brown Corpus frequency and synset count
|
||||
nouns = filter_common(nouns)
|
||||
adjectives = filter_common(adjectives)
|
||||
return nouns, adjectives
|
||||
|
||||
def writefile(fname, data):
|
||||
with open(fname, "w") as lf:
|
||||
lf.write("\n".join(data))
|
||||
|
||||
if __name__ == "__main__":
|
||||
load_data()
|
||||
nouns, adjectives = get_words()
|
||||
writefile("nouns.txt", nouns)
|
||||
writefile("adjectives.txt", adjectives)
|
Reference in New Issue
Block a user